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Abstract The effect of electro-convection in a cylindrical flow annulus on heat transfer
enhancement has been investigated numerically. Weakly ionized air is considered to be the working
fluid throughout this work. The effect of exit boundary condition, considered to be the main
hindrance for the numerical solution, has been discussed in detail. The present work shows
interesting flow field characteristics, which are in excellent agreement with some other established
experiments. The heat transfer enhancement, as reported in this work, appears to be small in view
of the low magnitude of the applied voltage but it clearly and surely delineates the trend, i.e. with
increase in the strength of the electric field, heat transfer enhances.
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Nomenclature
~E ¼ electric field vector (electric body force

per unit charge)
fe ¼ electric body force per unit volume
Fe ¼ non-dimensional electric body force

f eR2=ru
2
0

� �
H ¼ width of inlet opening (R22R1)
p ¼ pressure
pr ¼ reference pressure
Pr ¼ fluid Prandtl number ðmcp=KÞ
Re ¼ flow Reynolds number ðru0R2=mÞ
Ti ¼ temperature of fluid at inlet
Tv ¼ wall temperature
u0 ¼ reference velocity
u,v ¼ velocity components along z, r

directions, respectively

U,V ¼ non-dimensional velocity
components along Z, R directions,
respectively

V ¼ also used to indicate applied voltage

Greek symbols
r ¼ density
re ¼ charge per unit volume
c ¼ non-dimensional stream function
1 ¼ permittivity of the working fluid
10 ¼ absolute permittivity

Subscript
v ¼ wall
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Introduction
During the last decade, significant amount of research work on
electrohydrodynamically (EHD) enhanced heat transfer and mass transport
has been reported by researchers around the world. Rapid control of
performance by varying the applied electric field, simple design, low power
requirements and absence of sound or vibration are said to be attractive
advantages of the application of EHD. Its application in the fields of single- and
multi-phase flows is being reckoned as an emerging area in the field of heat and
mass transfer. The enhancement of single-phase heat transfer processes,
especially in gaseous systems, is an area where researchers and designers
spend a great deal of effort. The need to improve the heat transfer rates was
made imperative by the ever-increasing requirement for smaller and more
cost-effective thermal systems. In single-phase heat transfer, the boundary
layers that form on the thermally active surfaces offer a significant resistance
to the flow of heat. Enhancing techniques are therefore employed to alter the
boundary layer structure of the flow and in laminar or free convective
situations, to increase the flow velocity. EHD aims at producing strong corona
winds that result in lowering the thickness of thermal boundary layer thus
augmenting heat transfer. The corona wind was first discovered by Hauksbee
(1719) and was subsequently more rigorously studied by Chattock (1899).
Analysis by Robinson (1961) and Steutzer (1959) resulted in a basic
understanding of the fluid mechanics of the phenomenon. While Steutzer
(1959) presented a theoretical analysis of ion-drag phenomena, Robinson (1961)
extended the results of Steutzer (1959) by applying Bernoulli’s equation and
showed that the corona wind velocity was proportional to the square root of
current. Marco and Velkoff (1963) were the first to examine the application of
the corona wind to heat transfer enhancement. They produced a wire generated
corona wind, which impinged on the bottom of horizontal plate; this resulted in
heat transfer coefficient that were six times the free convection value. O’Brien
and Shine (1967) followed with an investigation into the effects of pressure and
gas type. They found that heat transfer enhancement could not occur below an
electrode-specific threshold atmospheric pressure. A maximum local heat
transfer enhancement, at atmospheric pressure of 8.5 times the no-field value
was reported. These classical observations (Chattock, 1899; Hauksbee, 1719;
Marco and Velkoff, 1963) led to a series of subsequent intensive research in the
field of heat transfer enhancement by employing EHD technique.

Experimental studies were also conducted on both internal and external
flows. Soon it was established that EHD effects are most significant in
situations where flow is in the laminar regime. For high turbulent flows, the
electrically induced effects become swamped in the presence of turbulence
induced eddy-diffusivity effects. An extensive review of literature on EHD
enhancement of convective heat transfer can be found in the work of Zia (1989).
It has been indicated therein that the prospects of EHD enhancement in forced
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convection of gases is yet to be fully explored. However, Mizushina et al. (1976)
conducted experiments on EHD augmented forced convection in an annulus
with air as the working fluid. They examined the effects of both positive and
negative field polarities. They were also successful in correlating augmented
Nusselt numbers and friction factors in terms of the ratio of ion-drag forces to
viscous forces in the bulk flow. Fujino et al. (1989) studied augmentation of
laminar forced convection heat transfer in a channel flow by employing a
transverse dc electric field with R113 as the working fluid. Ohadi et al. (1991)
experimentally studied the effect of corona discharge on forced convection heat
transfer in a tube with air as the working fluid. Single- and double-electrode
configurations were used in their work. They concluded that significant heat
transfer enhancement are possible, in the case of a single electrode, for only in
the laminar and transitional flow regimes while, on the other hand, with a two
electrode configuration, enhancement in heat transfer could be extended to the
turbulent flow regimes as well. Two recent review papers (Allen and
Karayiannis, 1995; Seyed-Yagoobi and Bryan, 1999) describe the state-of-the-art
survey of EHD-based heat transfer enhancement encompassing typical
application areas like multi-phase flows, natural convection, etc.

From what has been described earlier, it appears that although considerable
effort has been emfployed for experimental determination of heat transfer
enhancement, little has been done towards it from the viewpoint of numerical
simulation. In this work, an attempt will be made to demonstrate the heat
transfer enhancement purely from the viewpoint of numerical analysis. For this
purpose, the case of flow of air through an annulus, as described by Ohadi et al.
(1991), has been chosen with the inner cylinder being assumed to represent the
high-voltage wire. Since it has been stated earlier that the effect of EHD-based
heat transfer enhancement is most pronounced in the laminar regime, the
present work and subsequent discussion will be limited to lower values of the
Reynolds number.

Interaction of the electric field with forced convection
Generally, the flow produced by applying a dc electric field to a weakly-ionized
fluid may be pictured as a free jet discharged into a fluid of the same type. The
net effect can be used to destabilize the thermal boundary layer on the heat
transfer wall and, therefore enhance the heat transfer coefficient. As a
consequence of this field, the electric body force density acting on the molecules
of a fluid consists of three terms (Melcher, 1981) as shown below:

~fe ¼ re
~E2

1

2
E 2 ~71þ

1

2
~7 E 2r

›1

›r

� �
T

� �
ð1Þ

The three terms in equation (1) represent three different kinds of force densities
acting on the fluid. The first term represents the force acting on the free charges
in the presence of an electric field and is known as the Coulomb force. In cases
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where the permittivity of the fluid is assumed constant (as in the present case),
the second and third terms on the right-hand side of equation (1) become
negligible. Under these circumstances, the electric body force is simply the
Coulombic force

~fe ¼ re
~E ð2Þ

Yabe et al. (1978) has shown that the Coulombic force was the principal force in
producing corona wind for positive discharge in a wire-and-plate configuration,
with nitrogen as the working fluid.

Now that the electrical force field has been explicitly expressed, it remains to
determine the expressions for re and ~E in terms of system dimensions and
applied electrical field. Details of the derivation have been described in the
Appendix. It is seen therefrom that the electrical body force per unit volume of
the fluid along the radial direction is given by

feðrÞ ¼ 2
10

r 3

fðR2Þ2 fðR1Þ

lnR1=R2

� �2

ð3Þ

Equation (3) is a general description of the variation of fe(r) when the electrode
length is infinite. For electrodes of finite length, the electric force field is
expected to be a function of r and Z. However, a “long electrode length” had to
be avoided in this study to avoid complications associated with exit boundary
conditions – a matter adequately discussed later.

Because of the axisymmetric nature of the electric field force, fe, is expected
to influence the r-momentum equation only and will appear as a source term in
that equation, as discussed below.

Governing equations, boundary conditions and the numerical
scheme
For steady, incompressible, two-dimensional laminar flow, the conservation
equations (in the axisymmetric case) are as follows.
Continuity:

1

r

›ðry Þ

›r
þ

›u

›z
¼ 0 ð4aÞ

z-momentum:

r u
›u

›z
þ y

›u

›r

� �
¼ 2

›p

›z
þ m

›2u

›z2
þ

›2u

›r 2
þ

1

r

›u

›r

� �
ð4bÞ

r-momentum:

r u
›y

›z
þ y

›y

›r

� �
¼ 2

›p

›r
þ m

›2y

›z2
þ

›2y

›z2
2

y

r 2
þ

1

r

›y

›r

� �
þ f eðrÞ ð4cÞ
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Energy:

rcp u
›T

›z
þ y

›T

›r

� �
¼ k

›2T

›z2
þ

›2T

›r 2
þ

1

r

›T

›r

� �
ð4dÞ

These equations are made dimensionless with the introduction of the following
non-dimensional quantities:

U ¼
u

u0
; V ¼

y

u0
; Z ;R ¼

z; r

R
; P ¼

p2 pr

ru2
0

; u ¼
T 2 T i

Tv 2 T i

The conservation equations in dimensionless form are as shown below:

V

R
þ

›V

›R
þ

›U

›Z
¼ 0 ð5aÞ

U
›U

›Z
þ V

›U

›R
¼ 2

›P

›Z
þ

1

Re

›2U

›Z 2
þ

›2U

›R 2
þ

1

R

›U

›R

� �
ð5bÞ

U
›V

›Z
þ V

›V

›R
¼ 2

›P

›R
þ

1

Re

›2V

›Z 2
þ

›2V

›R 2
2

V

R 2
þ

1

R

›V

›R

� �
þ Fe ð5cÞ

U
›u

›Z
þ V

›u

›R
¼

1

Re · Pr

›2u

›Z 2
þ

›2u

›R 2
þ

1

R

›u

›R

� �
ð5dÞ

The flow domain is shown in Figure 1.
Since the flow is assumed to be axisymmetric, we concentrated on the upper

half of the flow domain and considered it as the computational domain, which
is shown in Figure 2. The hydrodynamic and thermal boundary conditions are
marked therein.

Figure 1.
Flow domain
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A large length of the computational domain had to be considered so that the
flow becomes fully developed at the domain exit. The pressure reference point
is chosen at a node on the exit plane of the computational domain. The effect of
these boundary conditions will be discussed in detail in the subsequent section.

The non-dimensional governing equations (5(a)-(d)) are discretized by
standard Galerkin method. Since the energy equation (5(d)) is not linked with
the momentum equations, the later equations are treated by Newton-Raphson
method and the discretized equations are solved by a frontal solver. The
advantage of the Newton-Raphson method lies in the fact that for attaining a
prescribed convergence level, not more than six iterations are required for a
given set of input parameters. By “prescribed convergence level”, in the context
of the present work, it is implied that the difference in the values of a variable,
for two successive iterations, does not exceed 1027. Finite element formulation
of the constitutive equations starts with defining variables at the nodes. In the
present work, an eight-noded isoparametric quadrilateral element has been
used throughout for the purpose of discretization. To avoid the spurious modes
of pressure rise, pressure is defined only at the corner nodes while other
variables are defined at all nodes. During the discretization process, velocity
shape functions are used to weight the momentum and energy equations while
the pressure shape function is used to weight the continuity equation. The
detail of the procedure has been described by Nag et al. (1993). Once the velocity
field is obtained from the solution of equations (5(a)-(c)), the temperature field is
obtained directly from the solution of equation (5(d)). The local Nusselt number
at the hot wall at R ¼ 1 is defined by the following relation:

2K
›T

›r

����
r¼R2

¼ hðTv 2 T iÞ or NuðZ Þ

����
R¼1

¼ 2
›u

›R
jR¼1 ð5eÞ

Now, a few words about the selection of the reference temperature Ti in the
above equation are in order. As far as the heat transfer aspect is concerned, the
heat transfer from the hot wall is expected to be governed by (Tv2 Tb) where
Tb is the local fluid bulk temperature. Indeed this is the practice for single-phase
forced convection cases. However, as far as the application of this practice to
EHD related field is concerned, a few difficulties arise. Ohadi et al. (1991) pointed

Figure 2.
Computational domain
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out that small output (a few millivolts) signal of thermocouples, which would be
used for the measurement of bulk temperature, could be easily swamped in the
presence of high voltage field. The second major problem, according to them,
could be due to the presence of a pointed object such as a thermocouple into the
electric field which might result in local distortion of the electric field, and any
such distortion of the field would alter the local electrostatic force on the fluid –
thus altering the heat transfer rates. Accordingly, they had defined fluid bulk
temperature based on the average of temperatures at inlet and outlet sections of
the test zone. Fujino et al. (1989) calculated Tb(z) by using an energy balance
between the inlet section and the z-section for the constant wall heat flux case. It
appears that, for the EHD-based heat transfer cases, the concept of reference
temperature had been dictated purely by experimental constraints rather than
the driving temperature difference concept. However, in the present work, the
local bulk temperature of the fluid (defined later) has been used throughout for
the purpose of calculation of the heat transfer due to the fact that this
temperature can be easily calculated numerically; in addition, comparison with
benchmark solutions became easier with its use.

For stream function calculation in (R, Z ) co-ordinates, a non-dimensional
stream function c is introduced such that

U ¼
1

R

›c

›R
and V ¼ 2

1

R

›c

›Z

These satisfy the continuity equation. The nodal values of c are calculated
from the following Poisson equation.

›2c

›R 2
þ

›2c

›Z 2
¼ U þ R

›U

›R
2

›V

›Z

� �

The inlet boundary conditions are obtained by integrating one of the
fundamental relations, described above.

Accordingly,

c2 2 c1 ¼

Z R2

R1

U ðRÞjZ¼0 R dR

The stream function on the electrode surface has been arbitrarily assigned a
value of zero. Exit plane boundary conditions for c are easily derivable from
the full developed flow conditions.

Results and discussions
Before a detail discussion on the results, a few words about the code validation
and grid independence test might be more relevant. Recently, a present code
has been developed and we felt that it is necessary to validate the present code
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with some standard benchmark result. The standard result, under
consideration, corresponds to the asymptotic value of Nusselt number for
laminar fully developed flow in a tube under isothermal condition. This value is
3.66 (Kays and Crawford, 1983). The present code yielded the results as
described in Table I for two different values of Reynolds number at different
mesh sizes.

The non-dimensional length of the computational domain was 100 and the
Nusselt number values were based on the tube diameter as the characteristic
length and the difference between the wall temperature and the bulk mean
temperature was considered as the driving temperature difference for the heat
transfer process. It turns out that the 30£18 mesh (i.e. 30 elements in the
Z-direction £ 18 elements in radial direction) produced the closest
approximation to the benchmark value; in addition, Table I also shows that
this value, as expected, does not depend on the Reynolds number.

The above code validation study was based on flow through a tube. Since
the present problem involves flow through an annulus, a further grid
independence study appears to be necessary. For this purpose, the same
configuration (Figure 2) has been used. The length of the computational
domain is 200 and R1=R2 ¼ 0:00718: Table II shows the results of such an
exercise for a Reynolds number of 500.

In this study, the bulk temperature, ub, at any given value of z has been
calculated from the following expressions.

U av ¼
2

1 2 R1

R2

� 	2
� �

Z 1

R1=R2

UR dR

and

ub ¼
2

U av 1 2 R1

R2

� 	2
� �

Z 1

R1=R2

URu dR

The local Nusselt number can be calculated from the heat balance at the
isothermal surface and is expressed as follows:

Nu1
Mesh size Re¼ 100 Re ¼ 300

28 £ 16 3.680 3.680
28 £ 18 3.670 3.700
30 £ 16 3.665 3.700
30 £ 14 3.675 3.680
30 £ 18 3.667 3.667

Table I.
Code validation
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NuðZ Þ R¼1 ¼
2hðZ ÞR2

K
¼ 2

2

½1 2 ubðzÞ�

›u

›R

����
����
R¼1

The average Nusselt Number (Nuav), based on the integration along the length
of the isothermal wall of the tube, can be found easily with the help of the local
Nusselt number. The above grid independence study clearly delineates the
necessity of finer axial discretization and in all subsequent simulation
exercises, this procedure was followed. Figures 3 and 4 demonstrate typical
distributions of surface pressure, local Nusselt number along the length of the
tube. It can be seen that both surface pressure and local Nusselt number
distribution experience a sharp drop initially before the surface pressure
experiences a linear drop while the local Nusselt number reaches
asymptotically a near constant value. The temperature distributions at
several axial locations are also shown (Figure 5).

A typical stream line pattern for Re ¼ 500 is shown in Figure 6. It is seen
that the streamlines, for a considerable zone along the radial direction, turn
inwards initially before becoming almost horizontal in the later part of the
annulus. On the contrary, the streamlines near the inner cylinder are deflected
slightly outwards (due to the presence of the boundary layer) before becoming
parallel to the axial direction.

Now the effect of electrical field will be considered. However, before
initiating the discussion on the effect of electric field, a few words about the
limitation of full-developed boundary condition at the outlet and necessity of
using a large computational domain length may be appropriate. Let us consider
the case of the flow through the annulus for Re ¼ 1;200 and an electrode length
of 25 while the total length of the domain is 250. At the first instance, it may
appear that an unusually large length has been considered. This is indeed the
case if one does not consider the effect of electric field. However, the situation
changes drastically when a moderate electric field is applied to an otherwise
fully developed flow without any electric field. Since it is mentioned earlier that
the electrode can be considered as a potential generator of the radial velocity
component, a comparative study of the radial velocity distribution at the exit
planes of the electrode section (i.e. Z ¼ 25) and of the domain (i.e. at Z ¼ 250)
might be instructive. Table III gives details of such a study. It is seen that while
there is considerable radial velocity at Z ¼ 25 corresponding to no-field

Grid size Nu(at exit plane) Nuav u(exit plane) Umax (exit plane)

40£ 12 3.988 9.733 0.7606 1.669
45 £ 10 3.884 9.604 0.7613 1.665
45 £ 8 3.934 9.552 0.7597 1.678
55 £ 8 3.950 9.520 0.7595 1.678
65 £ 8 3.950 9.520 0.7595 1.678

Table II.
Grid independence
study of flow through
annulus
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condition, the situation at Z ¼ 250 closely conforms to the fully developed
boundary condition. The presence of significant radial velocity components at
Z ¼ 25 may be ascribed to the fact that this is well within the “developing flow
regime”. Now, a comparison of V-velocities between the no-field case and the
one in which 100 V is applied to the electrode leads to a few interesting
observations. It is seen that velocities have changed by at least two orders of
magnitude at the indicated locations. This major increase is more predominant

Figure 3.
Surface pressure

distribution for Re ¼ 500
and V ¼ 0

Figure 4.
Distribution of local
Nusselt number for

Re ¼ 500 and V ¼ 0
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in regions close to the electrode. In addition to this, it is further observed that
the perturbations produced in the electrode region do not die down even though
a large length of the recovery section was provided. In fact, at Z ¼ 250, the
decrease in radial velocity in the inner cylinder region is compensated by an
increase of the same at regions near the outer isothermal cylinder. This directly
points to the necessity of having a large length of the computational domain
even at low electric field situation. However, the computational cost also
increases and a trade-off at this point must be made. It appears that either one
will have to accept “small” radial velocity components at the exit plane or will
have to be satisfied with an extraordinarily large domain to completely satisfy
fully-developed boundary condition. In the present work, the first practice is

Figure 5.
Temperature
distribution at different
sections at Re ¼ 500 and
V ¼ 0

Figure 6.
Streamline pattern for
Re ¼ 500 and V ¼ 0
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followed i.e. results are obtained for different electric fields as long as the
maximum value of the radial velocity component remains below 5 per cent of
the maximum value of the axial velocity component at the domain exit plane.
This compromise points to the fact that all subsequent discussions are only
approximate; however, they adequately help in arriving at considerable
qualitative agreement with experiments, as will be discussed shortly.

For the purpose of flow visualisation, a flow Reynolds number of 1,200 has
been selected; in addition, three streamline patterns are considered – one for
no-field condition while the other two are for 100 and 225 V, respectively
Figures 7-9. Some interesting features of the flow field, compared with the zero
electric field conditions are described below:

(1) Application of electric field produces secondary rolls near the electrode
surfaces; the size of these rolls increases in the flow direction. Formation
of these secondary rolls near the electrodes pushes other streamlines in
the radial direction. This has two-fold consequences – streamlines being
more closely packed near the isothermal surface, shear forces on the
outer wall increases, resulting in greater pressure drop compared to the
no-field case. By the same ground, the thermal boundary layer thickness
also decreases resulting in increased heat transfer. This near-electrode
flow field structure is in excellent agreement with the experimental work
of Fujino et al. (1989).

(2) Now, the change in pattern for the streamlines, which are away from
electrode surface, may be examined. In sharp contrast to the no-field
case, one can notice the presence of ripples in these streamlines when

V ¼ 0 V ¼ 100
R Z ¼ 25 Z ¼ 250 Z ¼ 25 Z ¼ 250

0.0072 0 0 0 0
0.0218 0.000003 0 0.009693 0.000809
0.0364 0.000001 0 20.044431 0.001698
0.0656 20.000024 0 0.015774 0.002856
0.0948 20.000056 20.000001 0.005211 0.004157
0.1532 20.000180 20.000003 20.009976 0.004976
0.2116 20.000328 20.000001 20.006772 0.006275
0.3576 20.000977 20.000004 0.001329 0.006028
0.5036 20.001703 0.000017 20.001605 0.013889
0.6496 20.001461 0.000054 20.001754 0.032275
0.7956 20.000696 0.000040 20.001216 0.028079
0.8540 20.000470 0.000016 0.000026 0.010364
0.9124 20.000186 0.000070 0.000250 0.004311
0.9416 20.000082 0.000005 0.000109 0.003485
0.9708 20.000020 0.000002 0.000104 0.001626
0.9854 20.000004 0.000001 0.000072 0.000632
1.0000 0 0 0 0

Table III.
Radial velocity values

at axial locations
(Z ¼ 25 and 250) in the

absence/presence of
the applied field
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Figure 8.
Streamline pattern for
Re ¼ 1,200 and V ¼ 100

Figure 7.
Streamline pattern for
Re ¼ 1,200 and V ¼ 0

Figure 9.
Streamline pattern for
Re ¼ 1,200 and V ¼ 225
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strong electric field is present. In radial direction, these ripples between
the streamlines appear to be in phase while in the axial direction, the
wavelength gradually increases with no significant changes in the
amplitude. This presumably points to the decay process of these waves
in the exit region.

(3) Presence of ripples in flow field streamlines indicates that a greater path
length is traversed by the fluid particle in the flow domain compared
with no-field case; consequently, it may be imagined that the “residence
time” of a fluid particle in the domain increases due to the additional path
it has to travel, resulting in “greater time” for increased heat transfer.

(4) Formation of ripples on the streamlines in the electrode zone is mainly
dependent on the magnitude of applied voltage and the flow Reynolds
number. When Re is high, the perturbations, produced in the electrode
zone, by the electric field are swamped away downstream only to
re-appear subsequently in the no-field region. For low values of Re, it is
expected that the manifestation of ripples should occur over the electrode
region. For this purpose, streamline patterns for Re ¼ 200 and an
applied field of 125 V has been considered (Figure 10). Ripples, however
weak they are, seem to be present; the striking feature is the significant
way-ward shift of near-electrode streamlines from the electrode
surface. This may be ascribed to the fact that at low Reynolds
number, the radial velocity components in the flow-developing region, in
association with those generated by the electric field, contribute to the
shift of streamlines away from the electrode surface. In brief, the shift
may be visualised as the outcome of the race between fluid inertia along
the flow direction and that in the cross-stream direction. Once the
electrode zone ends (at Z ¼ 25), there is a sudden change in the value of
the radial velocity components and initiation of formation of secondary
rolls takes place.

Figure 10.
Streamline pattern for

Re ¼ 1,200 and V ¼ 125
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Subsequent to the analysis of flow structure, a few remarks about the pressure
distribution on the isothermal surface might be desirable. Figure 11 shows
pressure drops in the electrode zone along the isothermal surface for Re ¼
1; 200: It is seen that, within the range of applied voltage, pressure drop
between the inlet and exit section (DpE) becomes less compared to the no-field
case (DpO). This means that lesser pumping work is necessary when
electro-convection is present – a fact experimentally established by Fujino et al.
(1989). This is typical of low voltage regime; the behaviour reverses at higher
voltages due to reasons, which are already explained under item (1) earlier.
This trend is also reported by Fujino et al. (1989).

The variation of local Nusselt number along the isothermal surface for
Re ¼ 1; 200 with and without the electric field is shown in Figures 12 and 13.
The variation has been split over the length of flow domain to clearly
demonstrate the pattern in electrode and no-electrode regions. The electrode
region clearly predicts the heat transfer enhancement as the applied voltage is
increased. At or near the entry section, the local Nusselt number is expectedly
very high; during the later part the local Nusselt number decreases at a lesser
rate due to increase of fluid bulk temperature “ub”. While this is the trend in
the electrode region, local Nusselt number exhibited a wavy pattern in the
no-electrode region. This is a typical characteristic of the electro-convection
phenomena. A close look at the corresponding streamlines (Figures 7-9) would
reveal that the streamline near the isothermal surface is almost unperturbed by
the electric field effect. The question that logically arises is that, if the flow
situation near the isothermal surface has not changed much, what could be the
source of the wavy nature of the local heat transfer distribution? This can be

Figure 11.
Variation of surface
pressure at Re ¼ 1,200
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best explained by noting that the local Nusselt number depends on the bulk
mean temperature of the fluid at a given section, which again takes into
consideration the value of bulk velocity at that section. So, although the
streamline near the isothermal wall is unaffected by the presence of the field,
the ripples in the faraway streamlines considerably influence the heat transfer
from the isothermal surface. The effects of these ripples are so strong that at
some locations, the local Nu falls below the no-field value while at others it

Figure 12.
Variation of local Nusselt

number along the
isothermal surface at

Re ¼ 1,200

Figure 13.
Variation of local Nusselt

number along the
isothermal surface at

Re ¼ 1,200
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overshoots the no-field value considerably – the average effect, as can be
verified, is enhancement of heat transfer.

Finally, the isothermal patterns for three cases with Re ¼ 1; 200 are shown in
Figures 14-16; the three cases correspond to the no-field condition and applied
voltage of 100 and 225 V. The most important point to be noticed is the closer
packing of isotherms near the isothermal surface with increasing voltage – a
phenomena primarily responsible for augmentation of heat transfer from the
outer isothermal surface. The crowding of isotherms at the inlet plane do justify
large value of heat transfer coefficient observed here; this is due to the existence
of a singularity arising out of the specification of the thermal boundary
condition in that region. Other noticeable feature is the presence of ripples in
isotherms – an expected characteristic in forced convection phenomena where
the temperature field is determined from an existing velocity field.

Table IV represents a typical collection of heat transfer data for Re ¼ 1;200
and different applied voltages. It is seen that as voltage increases, the average
Nusselt number in the electrode region increases: the same is the case with the

Figure 14.
Isothermal pattern for
Re ¼ 1,200 and V ¼ 0

Figure 15.
Isothermal pattern for
Re ¼ 1,200 and V ¼ 100
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average Nusselt number for the entire surface except the case when the applied
voltage is 150. In this case, only the average Nusselt number decreased to 5.155;
as the voltage was further increased, the Nu - value also increased. Such trends
are also reported in the experimental works of Fujino et al. (1989) and Ohadi
et al. (1991). The same trend has been observed for Re ¼ 1; 000 at V ¼ 150:

Conclusion
This work has numerically demonstrated the effect of electro-convection under
forced flow condition. The typical flowfield patterns, which have never been
numerically investigated, have been addressed with adequate attention.
Excellent qualitative agreement with some established experimental work
marked the correctness of the numerical approach. Formation of secondary
rolls and presence of ripples in the streamlines are found to be a typical
characteristic of the electro-convection process. Unlike the EHD process, where
the corona wind is generated and heat transfer enhancement of 200 per cent has
been reported, the heat transfer enhancement in the present case is of the order
of a few per cent. This small enhancement is attributable to the small value of
the applied voltage. The other important aspect is the problem of defining
boundary conditions at the exit plane. This work has addressed the issue and it
is noted that a large length of computational domain can be used with fully
developed flow boundary condition at the exit plane for low values of Reynolds
number; for higher values of Re fully developed exit conditions are not exactly

Figure 16.
Isothermal pattern for

Re ¼ 1,200 and V ¼ 225

Applied voltage (V) Nuav (electrode region) Nuav (total isothermal surface)

0 11.440 5.145
100 11.503 5.179
125 11.543 5.192
150 11.563 5.155
225 11.598 5.176

Table IV.
A typical result of heat

transfer enhancement
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satisfied when the electric field is present. However, if very small departures
from zero radial velocity components at the exit plane are allowed, one can
obtain approximate solutions, as has been done in some part of this work,
which have excellent qualitative agreement with experiments on
electro-convection.
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Appendix. Electrodynamics

Coulomb’s laws – related with force field with two point charges

F ¼
Q1Q2

4p10r 2
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where 10 is the permittivity of free space; r the distance of separation; Q1 and Q2 are charges on
two bodies whose sizes are small compared to the distance of separation; hence they are called
“point charges”.

The relevant units are F – newton (N); Q1 and Q2 – coulomb (C); r – meter (m) and
10 – C2/(N m2).

In the case of the gravitational field of a material body, we define the “gravitational field
intensity” as the force per unit mass experienced by a small test mass placed in that field. In a
similar manner, the force per unit charge experienced by a small test charge placed in an electric
field is known as the “electric field intensity”, generally denoted by E.

So,

E ¼
F

Q1
¼

Q2

4p10r 2
;

in general,

E ¼
Q

4p10r 2
:

Unit of “E” is (N/C).

Now, if “re” represents charge per unit volume (i.e. charge density), the Coulomb force per unit
volume¼Ere¼ fe (say)

Units: re – C/m3 and fe – N/m3

This expression of “fe” can be directly used in the usual expression of Navier-Stokes equation
along with other body force terms. For this purpose, E and re need to be put down in the form of
concerned variables (say, applied voltage).

Potential function (f)
In fluid mechanics, we define ~V ¼ ~7f where ~V stands for velocity vector and f represents
potential function (a scalar quantity).

Similarly, a body force potential can be defined such that when this potential is differentiated
along a certain direction, the derivative will indicate the body force in that direction.

So, similarly, for this electric field, we can write, ~E ¼ 2~7f where “f” is called the electric
potential. If we consider the variation of electric field intensity vector along the radial direction
only,

then

EðrÞ ¼ 2
›f

›r
¼ 2

df

dr

or Z r

1

df ¼ 2

Z r

1

EðrÞ dr

or

Figure A1.
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fðrÞ2 fð1Þ ¼ 2

Z r

1

Q

4p10r 2
dr

Q

4p10r

If we define that f(1)¼ 0 (a chosen reference), then fðrÞ ¼ Q=4p10r

In electrodynamics, a “displacement current density vector” ð~DÞ is defined as ~D ¼ 10
~E

So, ~D ¼ 210
~7f

If “d” represents total displacement current across a section, then, d ¼ ~D · ~A
So,

jdj ¼ 210
›f

›r
Ar ¼ 2102pr

›f

›r

If jdj is constant, then, we may write (Figure A1),

df ¼ 2
jdj

2p10

dr

r
or fðR2Þ2 fðR1Þ ¼

jdj

2p10
lnR1=R2

or

jdj ¼
fðR2Þ2 fðR1Þ

lnR1=R2
ð2p10Þ

So

jDðrÞj ¼
jdj

Ar
¼

10

r

fðR2Þ2 fðR1Þ

lnR1=R2

From the definition of ~D then

EðrÞ ¼
1

10
jDrj ¼

1

p

fðR2Þ2 fðR1Þ

lnR1=R2
ðA1Þ

This expression of E(r) may be directly used in the computation of “fe”.

Now, we have to determine “re”.

From Gauss’ law,

re ¼ �7 · �D ¼ �7 · ð10
�E Þ ¼ r0

›Er

›r

So,

re ¼ 2
10

r 2
A; ðA2Þ

where

A ¼
fðR2Þ2 fðR1Þ

lnR1=R2
ða constant for a given configurationÞ:

So, the electrical body force per unit volume ( fe) is expressed as

f e ¼ reEr ¼ 2
10A

2

r 3
ðA3Þ
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